BEYOND COST-EFFECTIVENESS: WHY BENEFIT-COST ANALYSIS?

Dean T. Jamison
University of California, San Francisco

BCA Reference Case Scoping Conference
Seattle, WA
11 May 2017
Topics to be Covered

• Two cultures
• The Evolution of Disease Control Priorities
• Why BCA?
• The Way Forward: Education as an Example
Two Cultures: A (mild) Caricature

<table>
<thead>
<tr>
<th>Sources of difference</th>
<th>Economic evaluation in health</th>
<th>Environmental economics and the BCA community</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assigning dollar values to small changes in mortality risks</td>
<td>At best a distraction, at worst unethical</td>
<td>Routine</td>
</tr>
<tr>
<td>2. The loss associated with deaths at different ages</td>
<td>Years of life lost (YLL) most relevant</td>
<td>The occurrence of death most relevant</td>
</tr>
<tr>
<td>3. Summary measures of population health (QALYs, DALYs)</td>
<td>Intellectually essential</td>
<td>A waste of time</td>
</tr>
</tbody>
</table>
Two Cultures: A (mild) Caricature

<table>
<thead>
<tr>
<th>Sources of difference</th>
<th>Economic evaluation in health</th>
<th>Environmental economics and the BCA community</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assigning dollar values to small changes in mortality risks</td>
<td>At best a distraction, at worst unethical</td>
<td>Routine</td>
</tr>
<tr>
<td>2. The loss associated with deaths at different ages</td>
<td>Years of life lost (YLL) most relevant</td>
<td>The occurrence of death most relevant</td>
</tr>
<tr>
<td>3. Summary measures of population health (QALYs, DALYs)</td>
<td>Intellectually essential</td>
<td>A waste of time</td>
</tr>
</tbody>
</table>
A Caveat on CEA

We should distinguish two types of CEA

CEA-1: Assesses choice of technique and scale of effort using real outcomes (deaths averted; pregnancies averted; HIV infections averted, etc.)

CEA-2: Addresses intrasectoral resource allocation using QALYs or DALYs

* * *

CEA-1 is always essential

CEA-2 is completely replaced by BCA
The Evolution of the World Bank’s Disease Control Priorities

• *DCP 1* (1993) and *DCP2* (2006): CEA focused
• *DCP3* (2015-17): Substantial use of BCA (and of extended cost-effectiveness analysis)
Injury Prevention and Environmental Health

EDITORS
Charles N. Mock
Olive Kobusingye
Rachel Nugent
Kirk R. Smith

WITH A FOREWORD BY
Ais Alwan
Child and Adolescent Health and Development

EDITORS
Donald A. P. Bundy
Nilanthe de Silva
Susan Horton
Dean T. Jamison
George C. Patton

WITH A FOREWORD BY
Gordon Brown
WHY BCA (Rather than CEA-2)?

1. Some health sector investments have outcomes not measured in DALYs or QALYs – financial risk protection, IQ change, pain control and palliative care, stillbirths averted, growth shortfalls averted, control of fertility, abortion, plastic and reconstructive surgery. The list is short but important.

2. Many non-health sector investments have important health consequences – water supply and sanitation, traffic safety, air pollution control, education.

3. Existing aggregate measures of health outcomes can change in non-transparent ways and suffer conceptual shortcomings.

4. NIPA excludes mortality change. Full appreciation of the role of health in the evolution of human welfare requires valuation of change in health

COMMON THEME: COMPARABILITY
Intersectoral Resource Allocation: Education as an Example
Figure 30.3 Benefit Stream for Lower-Middle-Income Countries from One Additional Year of Schooling

Internal Rate of Return (IRR)

\[hPVNB(r_h) = \sum_{a=A}^{65} \frac{ev(a) + hv(a) - c_1(a) - c_2(a)}{(1+r_h)^{a-A}} \]

- \(c_1 \) and \(c_2 \) are direct and opportunity costs
- \(ev \) earnings value
- \(hv \) is health value
- PVNB is present value of net benefits
- The internal rate of return (IRR) is the value of the discount rate, \(r_h \), that makes \(PVNB = 0 \)
VSLₐ Values for Lower Middle-Income Countries

VSLₐ for Anchor VSLₐ = 180

<table>
<thead>
<tr>
<th>Age Adjustment</th>
<th>N</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Adjustment</td>
<td>180</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>66</td>
</tr>
</tbody>
</table>

VSLₐ for Anchor VSLₐ = 100

<table>
<thead>
<tr>
<th>Age Adjustment</th>
<th>N</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Adjustment</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>33</td>
</tr>
</tbody>
</table>

Source: Personal Communication from Angela Chang
Health-Inclusive IRR for Lower-Middle Income Countries

Panel A: Anchor VSL$_r$ = 180

<table>
<thead>
<tr>
<th>Age Adjustment</th>
<th>N</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Adjustment</td>
<td>N</td>
<td>10.2%</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Panel B: Anchor VSL$_r$ = 100

<table>
<thead>
<tr>
<th>Age Adjustment</th>
<th>N</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Adjustment</td>
<td>N</td>
<td>8.8%</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>8.2%</td>
</tr>
</tbody>
</table>

Original paper: VSL$_r$ = 130
(Pradhan et al, 2017)

IRR = 9.3%
IRR, without health = 7%

Source: Personal communication from Elina Pradhan.
THANK YOU

Download: dcp-3.org/
Order: worldbank.org/publications
@dcpthree
#dcp3